
HCMOLOGATIVE TRANSFORMATION OF ALDEHYDES AND KETONES TO α , ß-UNSATURATED KETONES THROUGH METALATED KETENE THIOACETALS Dieter Seebach ⁺, Michael Kolb and Bengt-Thomas Gröbel

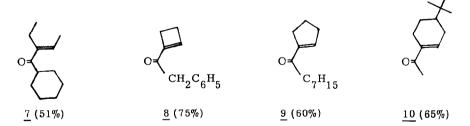
Institut für Organische Chemie des Fachbereichs 14 Chemie Justus Liebig-Universität, D-6300 Giessen, Ludwigstr. 21

(Received in UK 5 July 1974; accepted for publication 31 July 1974)

We report here a simple transformation of saturated carbonyl derivatives <u>1</u> to α , β unsaturated ketones <u>2</u> with the formation of two new C-C-bonds, through the sequence of steps (<u>1</u>) through (<u>4</u>) of <u>Scheme I</u>. In a previous paper ¹ we presented details of the high yield conversion of carbonyl derivatives <u>1</u> to ketene thioacetals <u>3</u>, step (<u>1</u>), and claimed,^{1,2} like other investigators, ^{3,4} that these compounds are useful synthetic intermediates because they are, among other things, ¹⁻⁷ precursors to the masked α , β -unsaturated acylanions <u>5</u>(= C=C=C, E¹-carbonyl umpolung⁷). However, this has not been

SCHEME I

ketene thioacetals 10				
3 from Carbonyl Compound	Alkylating Reagent	Product <u>4</u>	Yield	B.P.([°] C/mm) ^a M.P.([°] C)
<u>a: n</u> -pentanal	CH ₃ I	$\langle s \rangle$	90	100/1
<u>b</u> : acetone	(СН ₃) ₂ СНС1	$\langle s \rangle$	92	105/0.4
<u>c</u> : diethylketone	CH3I	⟨ ^s ⟩	87	90/1
	(Сн ₃) ₂ СНС1	(s)	80	120/0.25
	()−ı	(s)	82	130/0.4
<u>d</u> : cyclobutanone	C ₆ H ₅ CH ₂ Br	CstCH ₂ C ₆ H ₅	80	82
e: cyclopentanone	\underline{n} -C ₇ H ₁₅ I	$\langle S_{C_7H_{15}}^{S} \rangle$	75	125/0.02
<u>f</u> : cyclohexanone	CH ₃ I	CSX	87	110/1
g: 4-t-butyl- cyclohexanone	CH3I	(s)	77	97
<u>h</u> : cholestanone	CH ³ I	(s)	75 ^b	b
	L		L	L


TABLE I: Yields and physical data of the products 4, obtained from metallated 10 1.4.

a) Bath temperature in short path distillation.

b) The isomeric Δ^2 and Δ^3 olefins are formed in a 3:1 ratio (nmr analysis); m.p. of the mixture broad, $> 136^{\circ}$.

demonstrated except for the parent 2-ethylidene-1, 3-dithiane, ⁵ and in fact, a recent paper describes unsuccessful attempts to metalate substituted derivatives 3.⁸ In our original investigation of this reaction, $\frac{9}{9}$ we encountered the same problem of sluggish or no allylic proton abstraction at all under ordinary reaction conditions (n-butyllithium in THF, -20°C). However, in the presence of 2-4 moles of HMPTA/mole of ketene thioacetal $\underline{3}$ a smooth conversion to the desired allylic anions 5 occurs $\mathbf{^{10}}$ in all cases tested. Some examples are shown in Table I. This secures the step (2) of the above scheme. As is evident from the table, subsequent alkylation of the anions 5 takes place highly regioselectively (>95%) at the dithiane 2-position, and the derivatives 4 of α , β -unsaturated ketones are produced in high yields (step (3)). One geometrical isomer of 4 is formed from 3a and 3c with greater than 95% preference, as shown by the number of vinylic hydrogens seen in the nmr spectra. In the case of disubstituted double bonds (product from 3a) the E-configuration may be assigned (15 Hz trans-coupling) which is tentatively proposed for the trisubstituted double bonds (products from 3c) as well (see Table I). For the final hydrolysis step (4) we found the recently published reagent o-mesitylensulfonylhydroxylamine¹¹ to be most satisfactory. Other methods have been used success-

fully for the liberation of α , β -unsaturated ketones from their thioacetals.¹² The feasibility of this step, and by the same token, the versatility of the overall conversion $1 \rightarrow 2$ is demonstrated by the isolation of the ketones 7 - 10 in the yields shown.

In favorable cases, transformation $\underline{1} \rightarrow \underline{2}$ can be achieved with >60% overall yield. Acknowledgement: We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. Michael Kolb and Bengt-Thomas Gröbel gratefully acknowledge grants from the Studienstiftung des Deutschen Volkes.

References and Notes

- 1. D. Seebach, M. Kolb and B.-Th. Gröbel, Chem. Ber. 106, 2277 (1973).
- D. Seebach, B.-Th. Gröbel, A.K. Beck, M. Braun and K.H. Geiss, <u>Angew.Chem. 84</u>, 476 (1972); Angew.Chem. <u>Internat.Ed. 11</u>, 443 (1972).
- P.F. Jones and M.F. Lappert, <u>Chem. Commun.</u> 526 (1972); <u>J.Chem.Soc.</u>, <u>Perkin</u> Trans. I, 2272 (1973).
- F.A. Carey and J.R. Neergard, <u>J.Org. Chem.</u> <u>36</u>, 2731 (1971); F.A. Carey and A.S. Court, J.Org.Chem. <u>37</u>, 1926, 4474 (1972).
- D. Seebach, <u>Synthesis</u> 17 (1969); Special cases are the benzyl (D.L. Coffen, T.E. McEntee, Jr. and D.R. Williams, <u>Chem.Commun.</u> 913 (1970)) and cyanomethyl-substituted methylene dithianes (A.I. Meyers and R.C. Strickland, <u>J.Org.Chem.</u> 37, 2579 (1972)) with additional CH₂-acidification.
- D. Seebach, M. Kolb and B.-Th. Gröbel, <u>Angew.Chem.</u> 85, 42 (1973); <u>Angew.Chem.</u> Internat.Ed. 12, 69 (1973).
- 7. D. Seebach and M. Kolb, Chem.Ind. (London) 1974, in press.
- 8. G.H. Posner and D.J. Brunelle, J.Crg. Chem. 38, 2747 (1973).
- 9. B.-Th. Gröbel, Diplomarbeit, Universität Giessen, 1972.
- 10. 10 mmoles of 3 in 20 ml THF/4-8 ml. HMPTA are combined at -78° C with 11 mmoles of <u>n</u>-butyllithium or lithium diisopropylamide. After raising the temperature to $+20^{\circ}$ within 2-3 hours the resulting dark red solution is cooled to -78° and combined with the alkylating reagent.
- 11. Y. Tamura, K. Sumoto, S. Fujii, H. Satoh and M. Ikeda, Synthesis 312 (1973).
- E.J. Corey and D. Crouse, <u>J.Org. Chem.</u> <u>33</u>, 298 (1968); E.J. Corey and B.W. Erickson, <u>J.Org. Chem.</u> <u>36</u> 3553 (1971); T. Mukaiyama, S. Kobayashi, K. Kamio and H. Takei, <u>Chem. Letters</u> 237 (1972); M. Bonnet and F. Winternitz, <u>Comp. Rend.</u>, <u>Ser. C.</u> <u>274</u>, 1469 (1972); E.W. Colvin, T.A. Purcell and R.A. Raphaell, <u>Chem.</u> Commun. 1031 (1972); A. Closse and R. Huguenin, <u>Helv. Chim. Acta</u> in press.